Received 6 November 2006

Accepted 14 November 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rui-Feng Song,^a* Yu-Hong Wang^a and Jian-Rong Li^b

^aDepartment of Chemistry and Chemical Engineering, University of Science and Technology of Suzhou, Suzhou 215009, People's Republic of China, and ^bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: songrf@mail.usts.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å Disorder in solvent or counterion R factor = 0.038 wR factor = 0.101 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Bis[μ -8-(pyrimidin-2-ylsulfanylmethyl)quinoline- $\kappa^2 N$,S]bis[(acetonitrile)silver(I)] bis(trifluoromethanesulfonate)

In the twofold-symmetric dinuclear title compound, $[Ag_2(C_{14}H_{11}N_3S)_2(CH_3CN)_2](CF_3SO_3)_2$, each Ag^I atom is coordinated by one N atom and one S atom from one 8-(pyrimidin-2-ylsulfanylmethyl)quinoline ligand, one N atom from a second 8-(pyrimidin-2-ylsulfanylmethyl)quinoline ligand, and one N atom of CH₃CN, in a distorted trigonal pyramidal geometry. The *cis* bond angles around the Ag^I atom range from 90.8 (2) to 143.48 (11)°.

Comment

Dinuclear and polynuclear Ag compounds with luminescent properties and varying Ag...Ag interactions have been designed and synthesized by using suitable bridging ligands (Che *et al.*, 2000; Fei *et al.*, 2001; Tong *et al.*, 2000). Heterocyclic flexible thioether ligands containing *N*-donors exhibit rich structural variety, and reports of Ag^I complexes with such ligands have increased in recent years (Hartshorn & Steel, 1998; Su *et al.*, 2000; Suenaga *et al.*, 1999; Zheng *et al.*, 2003). The title compound, (I) is a dinuclear Ag^I complex of the flexible thioether ligand 8-(pyrimidin-2-ylsulfanylmeth-yl)quinoline (*L*).

(I) Complex consists of twofold-symmetric $[Ag_2(L)_2(CH_3CN)_2]^{2+}$ cations and uncoordinated $CF_3SO_3^{-1}$ anions (Fig. 1). Each Ag^I atom is coordinated by a quinoline and a pyrimidine N-donor from two distinct L ligands, an Sdonor from one L ligand, and an N-donor from CH₃CN. The coordination geometry of Ag^I is best described as trigonal pyramidal, with the basal plane made up of the N- and Sdonors from the ligand, and the apical position occupied by the N-donor of CH_3CN . The *cis* bond angles around the Ag^I atom range from 90.8 (2) to $143.48 (11)^{\circ}$ (Table 1). All distances around Ag^I (Table 1) are within the normal range expected for such coordination bonds (Hartshorn & Steel, 1998; Su et al., 2000; Zheng et al., 2003; Zou et al., 2004). Each

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. H atoms have been omitted. [Symmetry code: (i) $1 - x, \frac{1}{2} - y, z$.]

L ligand adopts a chelating coordination mode to Ag¹ through the S and quinoline N atoms, forming a six-membered ring which has a distorted boat conformation. The pyrimidine N atom of each ligand bridges to another Ag¹ atom, forming a twofold-symmetric eight-membered dinuclear ring, in which the Ag···Agⁱ separation is 3.479 (1) Å [symmetry code: (i) $1 - x, \frac{1}{2} - y, z$].

Experimental

A solution of $AgCF_3SO_3$ (26 mg, 0.1 mmol) in CH_3CN (3 ml) was slowly added to a solution of 8-(pyrimidin-2-ylsulfanylmethyl)quinoline (25 mg, 0.1 mmol) in $CHCl_3$ (3 ml). Slow diffusion of acetone into the resulting solution yielded colourless single crystals of (I) suitable for X-ray crystallographic analysis in 21% yield. Elemental analysis found: C 37.23, H 2.59, N 10.13%; calculated: C 37.04, H 2.56, N 10.16%.

Crystal data

$$\begin{split} & [\mathrm{Ag}_2(\mathrm{C}_{14}\mathrm{H}_{11}\mathrm{N}_3\mathrm{S})_2(\mathrm{C}_2\mathrm{H}_3\mathrm{N})_2] \\ & (\mathrm{CF}_3\mathrm{O}_3\mathrm{S})_2 \\ & M_r = 1102.62 \\ & \mathrm{Tetragonal}, \ I4_1/a \\ & a = 21.579 \ (3) \ \mathrm{\AA} \\ & c = 17.342 \ (5) \ \mathrm{\AA} \\ & V = 8075 \ (3) \ \mathrm{\AA}^3 \end{split}$$

Data collection

Bruker SMART 1000 CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.690, T_{\max} = 0.720$ Z = 8 $D_x = 1.814 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 1.26 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.30 \times 0.28 \times 0.26 \text{ mm}$

22965 measured reflections 4145 independent reflections 2830 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$ $\theta_{\text{max}} = 26.5^{\circ}$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0452P)^2]$
+ 13.311 <i>P</i>]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

 Table 1

 Selected geometric parameters (Å, °).

Ag1-S1	2.5347 (10)	Ag1-N2 ⁱ	2.233 (3)
Ag1-N1	2.377 (3)	Ag1-N4	2.440 (5)
N2 ⁱ -Ag1-N1	123.33 (11)	N2 ⁱ -Ag1-S1	143.44 (8)
$N2^{i} - Ag1 - N4$	91.22 (14)	N1-Ag1-S1	90.85 (8)
N1 - Ag1 - N4	100.75 (15)	N4-Ag1-S1	94.86 (12)

Symmetry code: (i) $-x + 1, -y + \frac{1}{2}, z$.

H atoms were included in calculated positions and refined as riding atoms, with C–H = 0.93 (aromatic), 0.97 (methylene) or 0.96 Å (methyl), and with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$ or $1.5U_{eq}(\rm methyl C)$. The trifluoromethanesulfonate anion was modelled as disordered, with atoms F2/F2' and O3/O3' having site-occupancy factors 0.773 (8)/ 0.227 (8).

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Science Foundation of the University of Science and Technology of Suzhou.

References

- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Che, C. M., Tse, M. C., Chan, M. C. W., Cheung, K. K., Phillips, D. L. & Leung, K. H. (2000). J. Am. Chem. Soc. **122**, 2464–2468.
- Fei, B. L., Sun, W. Y., Okamura, T., Tang, W. X. & Ueyama, N. (2001). New J. Chem. 25, 210–212.
- Hartshorn, C. M. & Steel, P. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3935-3940.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Su, C. Y., Liao, S., Zhu, H. L., Kang, B. S., Chen, X. M. & Liu, H. Q. (2000). J. Chem. Soc. Dalton Trans. pp. 1985–1993.
- Suenaga, Y., Kuroda-Sowa, T., Maekewa, M. & Munakata, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2737–2741.
- Tong, M. L., Yu, X. L. & Chen, X. M. (2000). Inorg. Chem. Commun. 3, 694–696.
- Zheng, Y., Du, M., Li, J.-R., Zhang, R. H. & Bu, X.-H. (2003). *Dalton Trans.* pp. 1509–1514.
- Zou, R.-Q., Li, J.-R., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2004). Cryst. Growth Des. 4, 79–84.